
DOI 10.1007/s100529800796
Eur. Phys. J. C 4, 513–517 (1998) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1998

Chiral QCD phase transition in nuclear collisions

N.G. Antoniou1, C.N. Ktorides1, I.S. Mistakidis1, F.K. Diakonos2

1 Department of Physics, University of Athens, GR-15771, Athens, Greece
2 Institute of Physical Chemistry, University of Heidelberg, INF253, D-69120 Heidelberg, Germany

Received: 9 June 1997 / Revised version: 18 July 1997 / Published online: 26 February 1998

Abstract. The characteristic aspects of multiparticle states generated at T = Tc, as a result of chiral QCD
phase transition, are studied in the framework of the O(4) φ4 theory. Predictions concerning critical events,
in connection with current and future experiments with ultrarelativistic heavy ions, are presented.

1 Introduction

In ultrarelativistic nuclear collisions, A+A, one expects
to detect new processes related to QCD phase transitions
(deconfinement, chiral) in a class of (critical) events asso-
ciated with quark-gluon plasma (QGP) formation. With
particular reference to the chiral transition in QCD there
is growing evidence, mainly from lattice considerations,
that it is of second order [1]. According to a general argu-
ment by Wilczek [2] the universality class for this second
order transition is represented by the O(4) linear σ-model.
In view of the extensive experimental programme on heavy
ions now in progress (Pb-SPS, RHIC, LHC) the effort to
derive detectable predictions based on the O(4) φ4 theory
of chiral QCD phase transition is of high priority [3,4].

On the experimental side, the crucial issue is to relate
the role of QCD chiral dynamics to multihadron produc-
tion patterns as these occur in heavy ion collisions. In the
present work we attempt a step in this direction based on
the assumption that, in these experiments, the conditions
required to consider the hadronization process as a static
phase transition are well fulfilled. We therefore adopt a
space-time evolution picture, for the system (QGP) pro-
duced in the central rapidity region, which favors the per-
sistence of local equilibrium conditions. A standard ac-
count for such a state of affairs is provided by Bjorken’s
inside-outside scheme for the development of the process
[5].

Our efforts will focus on a local system defined on
the critical isotherm, T = Tc, pertaining to the chiral
transition. The relevant critical exponent δ is associated
with the fractal dimension of the (critical) local system
at T = Tc and, therefore, with a particular intermittency
pattern, in momentum space, of the hadrons produced
from the local source [3].

The paper is organized as follows: in Sect. 2 we derive
a Ginzburg-Landau (GL) free energy for the hadronic sys-
tem at the critical temperature based on the O(4) Heisen-
berg model as a microscopic action for the QCD chiral
dynamics. In Sect. 3 we use the GL free energy derived in

2 to study the thermodynamics of the chiral condensates,
considered as local hadronization sources formed at the
critical temperature, and a number of phenomenological
characteristics related to the hadron production from the
local sources are presented. Finally in Sect. 4 we give our
conclusions and a brief outlook concerning the extension
of the local hadronization picture to a global description
expected to describe the multihadron production at the
real events in ultrarelativistic heavy ion collisions.

2 Critical fluctuations

In our approach the actual contact between QCD and the
O(4) Heisenberg model occurs at the critical point. The
question arises as to which side of this critical point the
two theories describe physical systems that are compatible
with each other. Consider the O(4) model. At microscopic
level it corresponds to a theory of scalar quantum fields
whose particle content is identified with pions, plus an
additional radial mode (σ-field). From such a microscopic
standpoint suppose we embark on a procedure through
which we integrate out those degrees of freedom that are
progressively encountered from very short distances up to
scales where a macroscopic profile of the fields, including
fluctuations, begins to emerge. In the limit where all de-
grees of freedom (of the microscopic theory) have been
integrated out, the so called effective action for the sys-
tem is obtained which accounts for configurations of the
macroscopic field φclass.

Adding finite temperature, via the standard procedure,
one finally arrives at a bonafied thermodynamical descrip-
tion of the system which, in the present case and near the
critical temperature, can be characterized as “thermody-
namics of chiral condensates”.

It follows from the above discussion that the physi-
cal relevance of the O(4) Heisenberg model, viewed as a
microscopic theory, refers to the hadronic side of QCD.
To the extent, now, that the freeze-out temperature Tf at
which one meets the asymptotic states, is very close to the
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critical temperature (Tc ≈ Tf ), as expected in a transition
of second order the overlap of the two theoretical models
occurs in the immediate vicinity of the critical point at the
hadronic side.

In a finite temperature context, the effective action
describes a three-dimensional field theory which exhibits
thermal fluctuations. On the critical surface, we write:

Γc [φ] = βc

∫
d3x

[
1
2

(∂φ)2 + Uc (φ)
]

(1)

with the fields entering the above relation being classical,
in the sense described earlier (the subscript “class” has
been dropped for notational economy). The O(4) effective
potential Uc (φ) at T = Tc reads [7]:

Uc (φ) ≈ gcβ
2(k−2)
c

(
φ2

2

)k

, k =
3

1 + η
(2)

where gc ≈ 6, and η ≈ 0.034. The last parameter is the
anomalous dimension assigned to the renormalized scalar
field φ. It accounts for the absorption of all (quantum)
fluctuation modes as they are being integrated out [6].
Note that (1) and (2) take the global view of a single
inertial observer. In particular, they result via the impo-
sition of periodic boundary conditions between two flat 3-
dimensional hypersurfaces, corresponding to the
Minkowskian equal time planes xo = 0 and xo = iβc. For
the problem in hand, the inside-outside cascade evolution
picture calls for a monitoring of the system by a collec-
tion of inertial observers each of whom contributes to the
local description of the system. Putting their observations
together leads us to the construction of thermodynamical
quantities related to the entire system as functions of the
proper time.

We proceed to adapt Γc [φ] to the dynamical evolu-
tion picture we have just described by restricting our-
selves to the domain of jurisdiction of a single (inertial) ob-
server. For this purpose we introduce rapidity and proper
time coordinates (ξ, τ) so that the longitudinal space ele-
ment corresponding to a local observer, in a hadronization
point ξ = ξo, becomes dx‖ = τ cosh(ξ − ξo)dξ. With this
choice and for the purpose of describing the system at
T = Tc, a longitudinal integration along the critical hy-
perbola τ = τc must be performed. We thereby obtain the
following integral representation for the effective action
pertaining to a local description of the system, as viewed
by the observer at ξ = ξo:

Γc [φ] = βcτc

∫
∆

dξ

∫
S⊥

d2x⊥

[
1

2τ2
c cosh(ξ − ξo)

(
∂φ

∂ξ

)2

+ cosh(ξ − ξo)
(

1
2

(∇⊥φ)2 + Uc (φ)
)]

(3)

where ∆ is the rapidity size and S⊥ the transverse area of
the system.

Having stationed ourselves near the critical point we
view (3) as a Ginzburg-Landau (GL) free energy which
governs the behaviour of the hadronic system in a local

mode of description. Our interpretation is in accordance
with the GL description of the Feynman-Wilson fluid near
the critical temperature, first introduced by Scalapino and
Sugar [8] and subsequently developed by many others [9].

3 Thermodynamics of chiral condensates

In order to reveal the thermal behaviour of chiral con-
densates we recall that the 4-component classical field
φi(x⊥, ξ); i = 1, 2, ..4, describes coherent emission of pi-
ons and sigmas at T = Tc from a hadronizing local source.
To this end, we place the center of the source at the point
ξ = ξo, x⊥ = 0, which are the coordinates of the local
observer. Furthermore, we set, for simplicity, ξo = 0.

To facilitate our discussion we consider, following [8], a
density operator ρ̂ which is diagonal in the O(4) coherent-
state representation and corresponds to the free energy
(3). In this context one may summarize the basic equations
as follows:

ρ̂ =
1
Q

∫
[δφi] |φ1..φ4〉e−Γc[φ]〈φ1..φ4|

Q =
∫

[δφi] e−Γc[φ] (4)

âi(x⊥, ξ)|φ1..φ4〉 = φi(x⊥, ξ)|φ1..φ4〉[
âi(x⊥, ξ), â+

i (x′
⊥, ξ′)

]
= δ(2)(x⊥ − x′

⊥)δ(ξ − ξ′)

In (4) |φ1..φ4〉 are O(4) coherent states and âi(x⊥, ξ) an-
nihilation operators associated with the particle content
of the field φi(x⊥, ξ). It is of interest to note that these
states, corresponding to real eigenfields of the annihilation
operators, form only a subspace of the coherent hadronic
world. They define a subsystem of pions and sigmas, the
Statistical Mechanics of which is described by the diag-
onal density matrix ρ̂ (4). The remaining eigenstates of
âi(x⊥, ξ) corresponding, in general, to complex eigenfields
are dissipated out and are associated with conventional
(noncritical) events which form the thermal environment
of the critical system under investigation.

The multiplicity operator is written:

n̂ =
4∑

i=1

∫
d2x⊥dξâ+

i (x⊥, ξ)âi(x⊥, ξ) (5)

and the average multiplicity of hadrons (pions and sig-
mas), < n >= tr(n̂ρ̂), becomes:

< n >=
1
Q

∫
[δφi]

(∫
d2x⊥dξφ2(x⊥, ξ)

)
e−Γc[φ] (6)

It follows that one may interpret φ2(x⊥, ξ) =
4∑

i=1

φ2
i (x⊥, ξ)

as the density of hadrons in 3-d space (x⊥, ξ), associ-
ated with a local source of hadronization, chosen at the
point x⊥ = 0, ξ = 0. This last remark implies that, rel-
evant to the search for macroscopic observables within
the framework of our description, the thermal average
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< φ2(x⊥, ξ) > in fact represents the density-density cor-
relation in this space.

Having reached the asymptotic states of the hadronic
system in a smooth manner with the aid of a collection of
local sources of hadronization, we are now ready to con-
struct the partition function. More specifically, the local
observers are assigned respective subdivisions V(m1,m2)
= V

m1m2
2

of the total cylindrical volume V = πR2
⊥,c∆

(∆ → ∆

m1
,R⊥,c → R⊥,c

m2
; m1,m2 ≥ 1) within which

corresponding multiplicities (n) are uniformly distributed.
Identifying φ2 = nm1m2

2

V (density of hadrons in the cylin-
drical volume V(m1,m2) emitted from the source at the
origin), (3)–(4) lead to the following canonical partition
function for the hadronic fluid at T = Tc:

Z(n, V, Tc) =
∑

m1,m2≥1

exp
{

−cAgcβ
2k−2
c

2kVk−1

×nkmk−1
1 m2k−2

2 f

(
∆

m1

)}
(7)

where f(χ) ≡ 2 sinh( χ
2 )

χ .
For a typical size of the local system ∆ ≤ 1, we may

safely put, in what follows, f( ∆
m1

) ≈ 1. In (7) we have in-
troduced the dimensionless quantity cA = τc

βc
which gives

a measure of the hadronization time-scale. In the stan-
dard description of the nuclear A + A collision process
the A-dependence of this parameter suggests cA ≈ A

1
3 .

The volume V = πR2
⊥,c∆, available at T = Tc, depends

on the transverse radius R⊥,c, a characteristic parameter
in the critical system that may reach values much higher
than the geometrical size of the original nuclei. More-
over, as we read from (7), a characteristic volume scale

V0 = β2
c

(cAgc

2k

) 1
k−1

introduces itself, which, for the ac-

tual values of the parameters (βc ≈ m−1
π , gc ≈ 6, k ≈ 3),

is of the order of 1.7A
1
6 (fm2). This is a sufficiently small

scale compared to the volume available in A + A collisions
a circumstance which guarantees that in experiments with
heavy ions the thermodynamic limit (V�V0) can be eas-
ily reached. As a consequence, the critical fluctuations of
the system, which are expected to develop in the thermo-
dynamic limit, may become visible in these collisions.

The precise nature of the density fluctuations at T =
Tc may be revealed by studying the multiplicity moments
< nq; a, b > (q = 1, 2, ..) within cylindrical domains of

volume Vab =
V
ab2 (a ≥ 1, b ≥ 1). In particular for a � 1

or b � 1 one may search for fractal structures both in
rapidity and transverse space. We have:

〈nq; a, b〉 =
π2

Q(a, b)

∑
n,m1,m2

nq+1

× exp
{−αk−1nkmk−1

1 m2k−2
2

}
(8)

where α = V0

V and

Q(a, b) = π2
∑

n,m1,m2

n exp
{−αk−1nkmk−1

1 m2k−2
2

}
×(n ≥ 1,m1 ≥ a,m2 ≥ b)

Introducing the scaling variable z = V0

Vab
we find

〈nq; a, b〉 = zq 1−k
k

Iq(z)
I0 (z)

(9)

with

Iq (z) =
∫ ∞

z
k−1

k

dx xq+1
∑

m1,m2≥1

exp
(−xkmk−1

1 m2k−2
2

)

Having fully imparted into the critical hadronic system
the physics of the underlying microscopic theory, more
accurately of its universality class representative, we can
proceed to derive concrete results concerning its behaviour.
In what follows we furnish a number of specific predictions
pertaining to the critical hadronic system limiting our ar-
guments to the basic essentials. A more detailed analysis
will be presented elsewhere [11].

a) Multidimensional intermittency patterns associated
with chiral QCD phase transition. Equation (9) leads to
the power laws:

〈nq; a, b〉 ≈ 2qIq(0)
I0(0)

(
πk−1

cAgc

) q
k

×
(

∆

a

)q k−1
k

(
R⊥,c

bβc

) 2q(k−1)
k

(10)

valid for Vab �V0. The above equation shows that the
distribution of hadrons of a local source at T = Tc has a
monofractal structure [10] with dimension dF = 3

(
1 − 1

k

)
which, due to the cylindrical geometry of the collision, is
the Cartesian product of two fractals, F = F1×F2, one in
rapidity (F1) with dimension d(1)

F = k−1
k and the other in

transverse space (F2) with dimension d(2)
F = 2

(
1 − 1

k

)
.

The fractal structure in configuration space, F=F1×
F2, leads to a similar fractal, F̃ = F̃1 × F̃2, in 3-d momen-
tum space (rapidity×transverse momentum space) with
F̃1 = F1 and F̃2 given by the Fourier transform of F2.
The fractal dimension of F̃2 is d̃

(2)
F = 2−d(2)

F , leading to
strong intermittency in the transverse momentum plane(
d̃

(2)
F = 2

k

)
. The projections of F̃

(2)
onto its 1-d subspaces

are also fractals with dimension 2
k . In short, the theory

predicts a complete multidimensional intermittency pat-
tern associated with a local hadronization source which, at
the level of second order factorial moments and in terms of
the usual variables in momentum space (rapidity y, trans-
verse momentum q⊥ and azimuthal angle ϕ), reads as fol-
lows

F(1)
2 (δϕ) ∼ F(1)

2 (δq⊥) ∼ M
1−2η

3 ,
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Fig. 1. The density-density correlation function < ρ(0)ρ(ξ) >
produced by Monte Carlo simulation of the partition function
(7) using the Metropolis algorithm (full squares). For illus-
tration we show in the same plot the theoretical prediction
< ρ(0)ρ(ξ) >∼ |ξ|− 1

k (line)

F(1)
2 (δy) ∼ M

1+η
3

F(2)
2 (δϕ, δy) ∼ F(2)

2 (δq⊥ , δy) ∼ M
2−η
3 ,

F(2)
2 (δϕ, δq⊥) ∼ M

4−2η
3 ,

F(3)
2 (δy, δϕ, δq⊥) ∼ M

5−η
3 , (11)

where M−1 =
δy
∆

,
δϕ

2π
,

δq⊥
q(0)

⊥
.

The power laws (11) are expressed in terms of the O(4)
anomalous dimension η (≈0.034) in order to emphasize
the idea that the expected universality in intermittency
patterns is intimately related to the chiral QCD phase
transition.

b) Intermittency breakdown scale. 1-d intermittency ef-
fects, associated with the fractal F1, break down at the

level of a minimal scale in rapidity δ0 =
V0

πR2
⊥,c

which, in

terms of the basic parameters involved, reads as follows

δ0 =
β2

c

πR2
⊥,c

(cAgc

2k

) 1
k−1

. (12)

The above equation suggests an upper bound δ0 <

2A− 5
6

π
√

3

(
βc

R0

)2

which for heavy ions (A > 100) guaran-
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Fig. 2. The moments Fq(δ) =< nq−1; δ > produced by the
same Monte Carlo events as in Fig. 1 for q = 2, 3, 4

tees a genuine intermittency effect in rapidity for a wide
range of scales (δ0 < 4 × 10−3).

c) Universal power-law for the average multiplicity. On
the basis of (9), (10) and (12), the average multiplicity 〈n〉
of the local system can be written in the following compact
form:

〈n〉 =
(k − 2)(3k − 4)Γ

( 3
k

)
(2k − 3)(5k − 6)Γ

( 2
k

) (
∆

δ0

) k−1
k

. (13)

This is a universal power-law, which depends on the criti-
cal exponent k (≈ 3), whereas the A-dependence has been
absorbed in the rapidity scale δ0. Equation (13) shows
that, in critical events, there is a tendency for low multi-
plicities of hadrons, emitted from each local source, unless
the minimal scale δ0 is extremely small. This tendency can
be understood physically as the result of a static transi-
tion of second order in which the change from quark to
hadron matter occurs at once at T = Tc. In the absence
of a mixed phase during this transition there is no chance
for a cumulative hadronization effect which could enhance
drastically the hadronic multiplicity.

d) Universal power-law for the density-density corre-
lation in rapidity. The fractal dimension in rapidity space
d(1)

F = k−1
k implies a power-law for the corresponding

density-density correlation function < ρ(0)ρ(ξ) >
=

∫
d2x⊥ < φ2(x⊥, ξ) >. In the limit δ0 � |ξ| we have

< ρ(0)ρ(ξ) >∼ ξ− 1
k , a strong effect which is expected to

appear in critical events together with 1-d intermittency
(in rapidity). Using the Metropolis algorithm to generate
events distributed according to the partition function (7)
in (n, m1)-space we can simulate the density-density cor-
relation function ρ(0, ξ) ≡< ρ(0)ρ(ξ) > for Pb+Pb col-
lisions (A = 208, ∆ = 1, δ0 = 0.004). The result is pre-
sented in Fig. 1 and the validity of this power-law is il-
lustrated. In Fig. 2 the 1-d moments < nq−1; δ > for the
same Monte-Carlo events are shown and the monofrac-
tal structure in rapidity (linear spectrum of intermittency
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indices) is illustrated. The predictions of the theory de-
pend on two parameters, the universal index κ reflect-
ing the critical behaviour and the nonuniversal scale in
rapidity δ0 reflecting the transverse size (δ0 ∼ R−2

⊥ ) as
well as the proper-time scale τ (δ0 ∼ τ1/κ−1). Although
our study has been performed at the critical point (T =
Tc, τ = τc) we claim that the universal characteristics of
the system (self-similar patterns) remain valid near the
freeze-out point (T ≈ Tf , τ ≈ τf ) at which hadrons reach
their free-streaming asymptotic state. In general, the dis-
tribution of hadrons, when they decouple from the inter-
action region, is fixed by the freeze-out temperature Tf ,
the corresponding time-scale τf and the size of the system
(∆, R⊥,f ). For a second-order transition we have Tf ≈ Tc

and, therefore, the effective potential (2) and the asso-
ciated self-similar behaviour (10) remain valid near the
freeze-out temperature. On the contrary, the time-scale τ
and the transverse radius R⊥ are likely to change dras-
tically (τf � τc, R⊥,f � R⊥,c) affecting, through the
parameter δ0 ∼ τ1/κ−1R−2

⊥ , the nonuniversal properties
of the hadronic distribution. As a result, the average mul-
tiplicity < n > per local hadronization source (13) has to

be modified by a factor < n >∼
(

R⊥,f

R⊥,c

) 2(κ−1)
κ

(
τc

τf

) 1
κ

cor-
responding to the transition from the critical to freeze-out
time-scale. This factor gives a measure of the multiplicity
change during the life-time of the critical system.

4 Conclusions

A number of characteristic properties of the critical had-
ronic system, viewed as a local hadronization source in
thermodynamic equilibrium centered at the position (in
rapidity space) of an inertial observer ξ = ξo, are dictated
by the anomalous dimension η of the O(4) Heisenberg
model. These properties underlie the structure of the rel-
evant critical events in ultrarelativistic nuclear collisions
and can be revealed by employing an event by event anal-
ysis. To determine the exact structure of these events re-
quires however the extension of our local model to a global
one consisting of several, non overlapping, hadronization
sources with centers distributed randomly in the whole

available space. In particular it is interesting to study the
influence of the existense of more than one sources to the
fractal character of the hadronic system and consequently
to the intermittency pattern of the corresponding factorial
moments. A complete treatment of this case leading to the
generation of observable critical events and their analysis
is still in progress [11].
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